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A~traet--Simultaneous flow of two or three immiscible fluids in porous media is modelled by a 
system of coupled, nonlinear partial differential equations. These equations are reduced to a 
system of nonlinear algebraic equations through the use of finite-difference approximations for 
derivatives. Several types of nonlinearities requiring careful analysis exist in this model. Here, we 
present a systematic study of all available, and some new, methods for the treatment of nonlinearities 
in this model. It is believed that the solution techniques presented here may also prove useful for 
other strongly nonlinear partial differential equations. 

I N T R O D U C T I O N  

The solution of the equations for fluid flow in porous media is of great practical importance. 
In particular, the theory of multiphase flow is the basis of petroleum reservoir engineering 
(Muskat 1937; Collins 1961). During the past decade, the numerical solution of problems 
of multiphase flow in reservoirs has evolved into a new discipline called "reservoir simula- 
tion" which provides the engineer with the means of simulating the behaviour of a reservoir 
on a digital computer. 

The equations describing multiphase flow of immiscible fluids in porous media are a set 
of strongly nonlinear, coupled partial differential equations. As such, they cannot be 
usually solved satisfactorily using standard numerical techniques. Consequently, a number 
of special, almost exclusively finite-difference, techniques have been suggested for the 
treatment of numerical problems of stability and truncation errors associated with various 
nonlinearities (Todd et  al. 1972; Welge & Weber 1964; Blair & Weinang 1969; MacDonald 
& Coats 1970; Letkeman & Ridings 1970; Sonier et  al. 1971 ; Nolen & Berry 1972; Robinson 
1971; Coats 1968; McCreary 19~/li. Proper treatment of nonlinearities is extremely 
important since practical applications often require the use of finite-difference grids with 
a large number of grid points. The use of a method with limited stability would necessitate 
selection of small time steps, resulting in prohibitively large computer time. Also, the use 
of a method which gives large truncation errors requires a large number of grid points 
requiring large computer time in order to attain a given accuracy. 

Although significant developments in the handling of these problems have been reported 
by earlier investigators, a direct comparison of their results is often impossible because 
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various investigators have tested their methods on different problems. The objective of 
this work is to investigate and compare systematically all available methods, as well as 
some new methods, for the treatment of all essential nonlinearities in the finite-difference 
model of multiphase flow. In particular, Newton's method is treated in detail. The analysis 
presented in this paper is restricted to one-dimensional, two-phase flow. The results of 
this study were successfully applied to the solution of two- and three-phase problems in 
two dimensions; in particular, to the solution of single-well (coning) problems which are 
among the most difficult multiphase flow problems (Settari & Aziz t973). The results of 
the two-dimensional studies have been reported (Settari & Aziz 1973; Aziz et ,t~ 1973: 
Settari 1973). 

While the topic dealt with in this work has received attention mostly in the petroleum 
literature, it is believed that the solution techniques presented here may prove useful for 
a wide variety of strongly nonlinear time-dependent equations encountered in other 
fields of engineering, including chemical engineering. 

1. FORMULATION OF THE PROBLEM AND THE FINITE-DIFFERENCE 
EQUATIONS 

Many actual situations of multiphase flow in porous media can be approximated by a 
mathematical model of the flow of two immiscible fluids with capillary forces and inter- 
phase mass transfer. Typically, only the solubility of the non-wetting phase in the wetting 
phase is significant for the mass transfer, and under the assumption of thermodynamic 
equilibrium it can be described by the solution ratio R~ as a function of the pressure of 
the wetting phase. This model is known as the//-model (Douglas et aL 1959} and the equa- 
tions are obtained by the combination of Darcy's law for every phase with the mass con- 
servation equation for the two components. The result is (see, for example, Douglas 
et al. 1959; Craft & Hawkins 1959; for the derivation): 

[#p~ .., dzl#R ~ ~ .  1@,, . . . .  ,, d z / ]  [ .Sw~:R~_.. ~ [ 1 - S ~ , ] ]  
t 8x 'Wdx] c'~x (gx[ [(x '"d.'c]] Lb,. gt ~t[ B, ] J + q" [lb] 

where 

)q = k k r l  . . . .  I = w,  n. [2] 
l l t B t  

is the space coordinate and z is another coordinate, vertical and 

dz 
In the above equations, x 

positive downwards. Therefore dz/dx = 0 tbr horizontal x and ¢[x = - I  for vertical 

x oriented upwards. The pressures of wetting and non-wetting phases are denoted by p,. 
and p, and they are related by capillary pressure, which is a function of the wetting phase 

saturations S w: 

P.  = p,, - p w  = j ( s . l  [3] 

B~ are the formation volume factors (sometimes referred to as //-factors) accounting for 



TREATMENT OF NONLINEAR TERMS IN THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 819 

the compressibility of fluids, 71 = gPl, where Pl is the density of phase l, and/h is the viscosity 
of phase 1. All these quantities are functions of pressure; densities are related to the forma- 
tion volume factors and R s by: 

1 
Pw = ~w(PWSTC + RspnSTC) [4a] 

1 
P, = ~P , sTC [4b] 

where the subscript S T C  denotes standard conditions at which we assume B w = B, = 1 
and R~ = 0. Equations [4] can serve as a definition of Bz; an alternative, more direct, 
definition is given in the nomenclature. Finally, k and ~b are the absolute permeability and 
porosity of the medium and k,w and k,, are the relative permeabilities of wetting and non- 
wetting phases respectively. The relative permeabilities are empirical functions of Sw. 

If the function Pc has an inverse, [3] may be used to eliminate S~ from [1] and we obtain 
two coupled equations in two variables Pw, P,. 

The two typical examples of petroleum reservoirs that can be described by the model of 
[1] are gas-oil reservoirs and oil-water reservoirs. In the gas-oil reservoir, gas is the 
non-wetting, and oil the wetting, phase. Gas is soluble in oil; the solubility is constant if 
the pressure is above the bubble point and decreases with pressure below this point. 
Therefore, decrease in pressure causes liberation of solution gas. This gas migrates (perco- 
lates) to the top of the reservoir due to density differences between oil and gas and this 
phenomenon is called "gas percolation". Although the capillary pressures in a gas-oil 
system are usually small and may be neglected, the density changes due to compressibility 
and solubility are significant and cannot be neglected. In an oil-water reservoir, usually 
water is the wetting, and oil the non-wetting, phase. Solubility can be neglected in this 
case, i.e. R s = 0 and compressibilities of fluids are usually small. On the other hand, 
capillary pressures may have significant values in many cases. In a special case of incom- 
pressible flow (B w = B, = 1) of fuids of constant viscosities in a homogeneous horizontal 
reservoir (k = constant, q~ = constant) and with zero capillary pressures, the problem 
has an analytical solution (Buckley-Leverett problem, see, for example, Collins 1961; 
Craft & Hawkins 1959). Even in the case of non-zero capillary pressure this problem 
may be referred to as the Buckley-Leverett problem and its description is obtained by the 
following simplification of [1] 

/~w ~xx k~ = q ~ -  + q~ [5a] 

k kr, + [5b] = q.. 

The principal difficulty in solving [1] or [5] rests in the coefficients kr~ on the left-hand 
side, which are strong functions of saturation, which, in turn, is a function of the difference 
of pressures. This difference is usually orders of magnitude lower than the pressures 
themselves. Additional difficulties arise from the non-linearity of the capillary pressure 
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function [2] and, in the case of oil-gas flow, from the gas percola t ion  which is due to 

density differences. The viscosity of the gas phase is usually small compared  to the liquid 

phase viscosity and this causes additional problems. 

We will now discuss a finite-difference approximat ion  of [1]. For  the sake of clarity, we 

will assume a regular grid system; for the t reatment  of an irregular grid, see Settari & Aziz 

(1972). If the solution is sought for x e (0. L) and the total number  of grid points is N 

(x 1 = 0 . . . . .  xN = L), then Ax -- x i ~1 - -  X i  = L / ( N  - 1). The diffusion type terms on the 

left-hand side will be approximated at x i by the s tandard three-point  formula while the 

first-order terms on the left-hand side of [lb~ will be approximated b3 an average of 

approximat ions  at i + ½ and i - ½. The r ight-hand side is approximated  by a backward  

difference opera tor  which satisfies the conservat ion of mass over a time step. (Detailed 

discussion of reasons for this choice of the finite-difference operators  is given in Settari 

(1973).) We denote  A z  i + 1 , 2  = Z(Xi+ I )  - Z(Xi) and define 

V~l~ ,  . = Pt,., -- Ps, - ;i . . . . .  Az.  ~6] 

The discretization of Eli can be written as 

[Ti~+ 1/2 v(l) . . . . .  - -  T i " ' - I , ' z V O 0  . . . . . .  ]n+l = ~iAvI-IS'\"+IAT[I~) --(BT,)S" "],  + q-,, [7ai 

., T w , -] ,, ~ ½[(R,,+ -- " • + (R~, R~ ,) i -  l/2V(I)w ~.2' , Rsi)Ti+ X,'2 v wi + 1/2 - -  

+ ITS'+ 1/2Vqb, + -- T'~ ,go0 q,,+ 1 , t /2 t 1 / 2  ni I, 'J 

, ,+ i  __ [7bi 
= ~)'--At --Bw (R,  -- R:)  + -B-I B .  q"' 

where 

and 

S . =  1 - S , .  

TI+ 1 [kk~l//\ 2z, . . . .  
1, '2 - -  A x ~ f l l B t j i + l / 2  A x "  = w ,  t l  [ 8 ]  

are the discrete transmissibilities. 
The r ight-hand side of [7] must  be expressed in terms of pressures. Using relation E3], 

we can define a " 'derivative" of saturat ion 

$7,+ 1 __ S.~, 
S',, = - - : - -~  1, - ..... -g ' l?9i 

Pc(S,,, ) - -  Pc(S,,,) 

Similarly, we can define "derivatives" of 1/B t and R, by 

(;,)E, 'l/ = Bt(pT+ 1) Bt(P") [p,;~.l _ p,;], 1 = w , n  [10] 

and 
i n ' n + l  R~ = [R~(p~, + t) __ Rdpw)~ / [pw -- p~] .  [113 
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Then the right-hand side terms may be expressed as 

.+1 ' I- 1 s' . + l _ p ~ ) ]  
[12a] 

I ~ , ]  • s - " = K , t P w  - PS ) .  [12c] 

Substitution of [12] into [7] gives the final discretization used in this work. It may be noted 
that the equality in [12] is only valid if the quantities S~ etc. are defined as chords by 
[9]-[11]. Consequently, these quantities represent implicit coefficients. 

The above set of finite difference equations can be expressed in a convenient matrix form 
by means of a suitable ordering of unknowns, Let us define the vector P as 

P = ( P w , , P . , ,  . . . .  P w , , P  . . . . . . .  p ~ , , , , p , , , ) r  [13] 

Then the set of all difference equations can be written as: 

T"+IP "+1 - Dn+I(P "+1 - P") + G "+1 = Q [14] 

where T is the flow coefficient (transmissibility) matrix composed of coefficients [8], D is 
the accumulation matrix composed of coefficients of expansions [12], G is the vector of 
gravity terms (containing all TIy~Az terms) and Q is the source vector which also accounts 
for the flow across boundaries at x = 0 and x = L (specified production or injection rate). 
According to the ordering [13], all matrices and vectors have block structure with 2 x 2 
and 2 × 1 blocks, respectively; the elements within a block have the same row and column 
subscripts. It is easy to see that the matrix T is block-tridiagonal and matrix D block- 
diagonal. 

Equation [14] can be written in a more convenient residual form. We define a residual 
R~ corresponding to a vector W by 

R~ = T " P  ~ - D"(P k - P") + G ' .  [1_5] 

The subscript m in the previous definition denotes that the elements of matrices T, D and 
vector G are evaluated as functions of a vector P"  which may be generally different from 
pk. Using the previous definition, we can rewrite [14] in the final form 

(T "+l - D"+I)(P "+1 - P") = -R,"+ 1 + Q. [16] 

Equation [16] represents a set of 2N nonlinear algebraic equations. The solution of this 
set is the main concern of this study. 

2. CLASSIFICATION OF NONLINEARITIES AND TEST PROBLEMS 

The nonlinearities in [16] appear in matrices Tand D and implicitly also in the vector R. 
A typical element of matrix T[8] will be denoted for further discussion as : 

T t = T t [ . f l ( p t ) ,  f2(Sw)] = G C f i f  2 [17] 
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where GC is the constant part of the transmissibility, Ji = 1/#B, and J2 = krt. Functions 
[i and 12 may be approximated on different time levels and in different ways between grid 
points, generally as: 

where 

i . - ,  T l r  lk ,  ~k2 q Ti4 l / 2  ~ L . !  l i l~. t  2i2J 

i -< i ~ ,  i 2 _<_ i + l ,  n ~< k 1 , k 2 <_ 11 + 1. 

The problem of approximating the i 4- 1/2 level in the space coordinate is referred to as 
the "weighting" problem. The problem of approximation of the n + 1 level in time is the 
problem of solution or linearization of the set of nonlinear equations. 

A similar situation exists in approximating the matrix D. 
All nonlinearities in [16] may be divided into two groups: 

(1) Weak nonlinearities 

All variables that are functions of the pressure of one phase only can be considered weak 
nonlinearities. These include " + 1 , .~,7 + 1 //2~ + 1 B l , (I/B~), R'~, and . An example of actual pressure 
dependent functions is presented by figure l(a) and (lb) (these data are from McCreary 
(1971)). The effect of weak nonlinearities depends on the degree of pressure changes and 
disappears in problems in which pressure remains constant. It is generally satisfactory even 
in the case of varying pressure to evaluate pressure dependent functions one step behind, 
i.e. as a function of P7 instead of p~'+ 1. Also, the approximation of the i + 1/2 level is not 
critical; in this work, we have used 

1 ' .t1 ....... ~ ~(.I~, + l~,~ ~). 

B w 

- -  2 !~C, 4 - - -  

~ [ 0 0 5  

Rs 

B n 

n 

I 2 - 0 . 0 2  I 

O,Oi  ! 

L ~  i _ i _ i o I _ I _ _ _ 1 _ _  
4 0 0  8 ©0 1200 1600 4 0 0  B O0 1200  1600 

p~,  psla p~ , psla 

(a) (b) 

F i g u r e  I. T y p i c a l  p r e s s u r e  d e p e n d e n t  func t ions .  

0 . 0 2  

n 

O.01 
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(2) Strong nonlinearities 

The coefficients dependent on saturation or capillary pressure, i.e. krt and S~, are the 
strong nonlinearities. The nonlinearity due to gas percolation has a special character and 
will be discussed separately. An example of functions k,w, k~, and Pc is given on figure 2, 
which shows the data from McCreary (1971), typical of a gas-oil system. Typical data for an 

1.0 1.0 

0-8 -- 0.8 

0.6 0.6 

k rt Pc 

0.4 -- Pc krw 0.4 

0.2--i ~ 0 , 2 0  

o .4 o.6 0.8 I o 
Sw 

Figure 2. Typical saturation dependent functions for gas-oil systems (oil is the wetting phase). 

1.0 ~ I 1.0 

0.8~% ~0.8 

krt °6 E 
0-4 -* 0.4 

kr, 

Pc 

0.21-- \ ~ --10.2 

krw ~3 
J r o 0 0.2 0.4 0.6 0.~ 

S,,,. 

Figure 3. Typical saturation dependent functions for water-oil systems (water is the wetting phase). 
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oil-water system are shown on figure 3 (kr curves are from Todd et al. 1972, Pc curve from 
Blair & Weinang 1969). It follows from eqn. [9] that the nonlinearity due to Sw disappears 

if Pc is a linear function of saturation, but this is not true of k,. Therefore, kr introduces the 
principal nonlinearity in [16]. 

Three test problems weie selected for numerical experiments: 

Test Problem No. 1. The first test problem is the incompressible Buckley-Leverett  
problem with negligible capillary pressure in which k~ is the only nonlinearity. The k~ 

functions are given by figure 3 and the other data are (see Todd et al.): L = 1000ft, 

Bw = B, = 1, /~w = ~n = 1 cp, k = 300 md, q5 = 0.2. Non-wetting phase is produced at 
x = L at a rate of 426.5 ft3/day and the wetting phase is injected at x = 0 at the same rate. 
The reservoir is horizontal with a cross-sectional area of 10,000 ft 2 and constant initial 

saturation S w = 0.16. This problem will be used for some tests in Sections 3 and 4. 
Test Problem No. 2. The second problem is obtained by adding the capillary pressure 

curve according to figure 3 to the first problem and will be used for testing in Section 5. 

Test Problem No. 3. The third problem is the compressible oil-gas problem including gas 
percolation, with the nonlinear functions given in figures 1 and 2. The other data are (see 

McCreary 1971): L = 135 It, k = 20 rod, ~b = 0.04. The densities at standard conditions are 

PwSTC = 60 lb./ft 3 and P,sTc = 0.0005 lb./ft 3. Non-wetting phase is produced at x = L at 
the rate of 2810 ft3/day at standard conditions. The reservoir is a vertical column with a 

cross-sectional area of 5,414,929 ft 2, constant initial saturation S w = 0.19. Initial pressure 
is given by gravity equilibrium with p,, = 1750 psia at the top of the column. 

3. W E I G H T I N G  O F  T R A N S M 1 S S I B 1 L I T I E S  

ta) Weighting.formulas 

According to our assumptions, we consider only the nonlinearity due to k,z. The 

value of krt , + ~..2 must be related to Sw, and Sw, + ~. The following approximation,  which seems 
to be most appropriate  from the standpoint of numerical analysis, 

k~t ...... = ½[k,t(Sw,) + krt(S ..... )] [18] 

may be called "midpoint  weighting" and it is of second order. An alternative formula 
(apparently not discussed previously in the literature for reservoir simulation) may be 
defined as 

krt, + 12 1 = kr~[~(Sw, + S . . . .  )]. [19] 

Although both approximations are of second-order, as shown in the Appendix, it is well 
known that [18] gives erroneous results. This is attributed to the hyperbolic character of 
the equations. 

The commonly used scheme, called "upst ream weighting" is given by 

krl(Swi ) if flow is from i to i + 1 [20] 
k,t,+,/z =(k,t(S . . . .  ) if flow is from i + 1 to i 

This formula gives only a first-order approximation.  
Todd et al. (1973) proposed an asymmetric second-order approximation that uses two 

upstream points 
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i.O 

0.8 

Sw 
O,E 

0.4 

0 . 2 - -  

~ _ _  ÷ One-point upstream 
~ -  x Two- point upstream 

o Midpoint, equation [18] 
o Midpoint,equation [19] 

Ax = L/ IO ~ ~  
A t = tO days \ \ I\\. 

I ( I I 
0.2 0.4 0.6 0.8 1.0 

x / L  

Figure 4. Comparison of weighting formulae for Test Problem No. 1 with Ax = L/IO. At = l0 days 
at t = 1500 days. 

_~  ½[3k,t(Sw,) - k,l(Sw,_,)] for flow from i to i + 1 [21] 
krl, + ,2 -~½[3k,t(Sw,+,) - k,,(Sw,_2)] for flow from i + 1 to i 

The direction of flow is given by the sign of Vtl)~,. ,/2 given by [6]. Flow is from i to i + 1 if 

V(I) < 0 and vice versa. 
Truncat ion  errors for all methods are summarized in the Appendix.  For  numerical  

testing, the transmissibilities were approximated  explicitly in time (i.e. f2 ~ f 2 " )  and small 

1.0[ 

+ 0ne-point upstream 
x Two-point upstream 

C ~ ; L ~  ~ "~ o Midpoint, equation [ 18] 
m Midpoint, equation [19] 

• _ ~ ~ - ~ , ~ ~  

AX : L / 4 0  ~ ~ \  

I I I I 
0 0.2 0.4 0.6 0.8 1.0 

x / L  

Figure 5. Compar ison of weighting formulas for Test Problem No. 1 with Ax = L/40, At = 10 days 
at t = 1500 days. 
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time steps were used. Comparison of numerical results calculated by all methods with the 
exact solution is shown in figure 4. It shows saturation profiles at t = 1500 days. Both 
midpoint formulas give erroneous answers although [ 19] seems to perform better than [18]. 
However, results with a finer grid (Ax -- L/40) given in tigure 5 rendered [t9~ almost as 
unsuitable as [18]. The second-order upstream formula gives a sharper displacement front 
than the single-point formula. The fact that upstream weighting is superior to higher order 
midpoint weighting has also been observed in solving Navier-Stokes equations (Runchal 
& Wolfstein 1969). 

One might propose that the bad performance of the second-order approximation is a 
consequence of inadequate space approximation of ~?S.,"(~t on the right-hand side of !1], 
which was obtained by discretization of (#S,./~?t)~. If it is assumed that ~?S,,...~t is linear 
between grid points, the mean value of {?S,,/#t between i -- ½ and i 4- ~, is given by, 

~t 1~ 6 [_ ?t 4-4 i ? t ' +  ?t J 

Then the right-hand side of the difference equations may be obtained by discretizing 
OS,,/St. Approximations of this type are discussed in Cotlatz (1966). Unfortunately, use of 
such approximations gives equations of highly oscillatory character. It is likely that non- 
oscillatory approximation would result from the upstream type of formulas, but this idea 
was not pursued, since it does not have any advantage over asymmetric approximation of 

k r l  • 

The weighting problem is an example of a problem in which the truncation error analysis 
such as the one carried out in the Appendix can be completely misleading. The truncation 
errors of the midpoint and two-point upstream formulas differ only in the coefficient of the 
A x  z term, but their performance is quite different. For the solution of practical problems, 
the choice is between single-point and two-point weighting. The single-point weighting 
scheme has a larger truncation error (additional first-order &~ term and the mixed term 
AxAt )  and has been found more sensitive to grid orientation in multi-dimensional problems 
(Todd et al. 1972). On the other hand, implementation of the two-point scheme requires 
more programming and computational effort, especially in connection with implicit 
approximations, which will be discussed next. 

4. APPROXIMATION TO TRANSMISS1BILITIES IN TIME 

The approximation of the time level appears to be crucial for stability of the finite- 
difference equations. The explicit approximation, i.e. T "+ l ~ T(.f"2) is only conditionally 
stable and therefore imposes a limitation on the size of time step. Stability problems become 
severe especially in the simulation of multi-dimensional flow around a single well, where 
high flow velocities are attained due to convergence of flow towards the sink. It was this 
application (coning simulation) in which the stability problem was first identified (Welge 
& Weber 1964). Later, it was demonstrated that the problem is a result of explicit trans- 
missibilities (Blair & Weinaug 1969), and subsequently several methods were suggested, 
involving linearized (MacDonald & Coats 1970; Letkeman & Ridings 1970: Sonier et al. 
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1971), as well as nonlinear (Nolen & Berry 1972; Robinson 1971), approximations to. the 
fully implicit transmissibilities. Although most of these methods are closely related to 
Newton's method (Ostrowski 1973; Ortega & Rheinboldt 1970) of solution of nonlinear 
equations, the use of the classical (or full) Newton's method has apparently not been 
discussed in the literature since the initial attempt in Blair & Weinaug (1969). It is compared 
with the other methods here for the first time. 

In the rest of this paper, we assume single-point, upstream weighting (equation [20]) 
for the approximation in space. 

(a) Expl ic i t  transmissibil i t ies 

As mentioned above, the approximation: 

T "+1 ~- T(f"2) [22] 

is only conditionally stable. This is demonstrated in figure 6 where the solutions obtained 
with different time steps are shown in comparison with the exact solution. Instead of using 
P" one might extrapolate pressure from two previous time steps, i.e. 

At" + 1 
pk : p .  + - - A t "  ( P" -- p . - 1 )  

and use T(fk). This gives only a slight improvement in stability. 

(b) Simple  iteration on matr ix  T 

Such a method for solving [16] with T "+1 

[T (~) - D] [P(V+ 1) 

v = 0 , 1 ,  • 

° l O. 8 ~ o o c--o- 

o. 6 - ~ × ~  

c 4 Z~x = L / 4 0  

may be written as: 

__ p(v)] = _  0(~) + Q "'(v) 

p(O) = p(.) 

x A t  = 2 5  days  

+ / k t =  5 0 0  days 

o A t = l O 0  days 
0.2 

Sw 

Exp l ic i t  t r a n s m  issibi l i t ies 

x ~  x ~ +~+ 

I I I I 
0 0 .2  0 .4  0.6 0,8 

x / L  

F i g u r e  6. S tab i l i ty  of  the  explici t  m e t h o d  [22] for  Test  P r o b l e m  No .  1 a t  t = 1500 days .  

1.0 

[23] 
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where T ~) = T(.f2c~)). It has been found through numerical experiments that [23] converges 

for At < Ate,, where Ate, is the stability limit for the explicit approximation of [22]. In the 
iterative process, the saturations oscillate with decreasing amplitude if At < At, , ,  and 

increasing amplitude if zXt > Ate,. In the latter case, the oscillations can be "damped out" ,  

if only a part of the saturation change in the current iteration is carried over for re-evaluation 
of 7". This may be achieved by defining T ~'~ by a weighted average : 

~ t c r  ~ ' iv) T~,,, = T ~ ,  , I, + d ~ , 4  f [[.( [ 2 )__ T~, , 11] [24] 

where d is a damping factor, 0 < d < 1. This damping scheme has been found convergent 

for time steps of an order of magnitude larger than At,.,, when tested on a two-dimensional 

problem. However, it has several features that make it impractical to use; in particular, the 
necessity of estimating Ate, and the choice of a suitable damping strategy. 

(c) Linearized implicit transmissibilities 

The method in its original formulation (MacDonald & Coats 1970; Letkeman & Ridings 
1970) consists of extrapolating T t by the first-ocder approximation t o f~  +~ as follows: 

7-,,,+ ~ ~ Tl([.~) + .;x_(p,,+ 1 __ p,~) [25] 
U F  c 

where 

t d1211dS l 
= 6cfli 17£l l dpc I 

is the derivative with respect to the upstream point. These extrapolated transmissibilities 
are introduced into TP and the nonlinear terms are linearized. For example, the nonlinear 
part  of a typical term of TP, T~.+ 1 tp - i  + 1/2~. u + 1 - P,)" + 1, is linearized by the following assumption 

1 8Tl  ,+1 ,, 8 T t ,  ,+1 
( p , i + ,  __ pu)n+ ~ c c ( P  c _ pn) ~ (Pu+ , -- PU) ~ c t P c  --  P'~)" [26] 

We will now show that this method of linearization can be interpreted as the first iteration 

of Newton's  method. The equation to be solved, [16], can be written as (combining [14] 

and [15]): 

R . + ,  = T . + , p , , + ,  __ D . + ~ ( p . +  t __ p . )  + G . + ,  = Q [27 ]  

and the classical Newton's  method for [27] is an iterative process defined by 

DR¢,.)[p¢,.+ ,, __ p~)] = __ RI~ I + Q, 

v = 0, 1 . . . .  ; p~O~ = p~,~. [28] 

Let us now assume that D and ;,~ are constant and examine the Jacobi matrix DR. By 
definition, elements of D R  are partial derivatives of vector R. In the notation introduced 
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earlier, the block element of D R  in the ith row and jth column will consist of derivatives 
c~R,,/OPkj, where l, k = w, n: 

ORw, c~Rw, I 

C~pw ~ Op.,j 

ago, aeo,. 
8pwj 8p.~ 

It can be readily seen that the matrix D R  can only have non-zero elements in the locations 
of the three block-diagonals of matrix T (note that this is not true if two-point upstream 
weighting. [21], is used). Under the above assumptions, derivatives of 7t are zero and deriva- 
tions of DP give again matrix D. A typical element of TP + G is: 

TI+ 1/2(Pt,+ , - Pt, - °hAz) = T~ [29] 

and it has, at most, four non-zero derivatives if the single-point upstream weighting is used. 
Let us denote: 

l 
OTi+ 1/2 [30] l '  

T i +  1/2 = V¢~)li+ t/2 OPt 

where the derivative without a subscript is understood with respect to the upstream point. 
Then the derivatives of the term [29] are: 

_ 0 P c  
Opk, 6ktTl+ 1/2 -~- TI+ 1/2" c~pg, 

OT~x aP~ 
OPki+l - -  ~klTl+ 1/2 + Tli'+ 1/2 "t3Pki+ l k, 1 = w, n 

where '~kt is the Kronecker delta and Pc is the upstream value (i.e. Pc = ( P , -  Pw)~ or 
(P, - Pw)i+ 1). After collecting all terms it is easy to see that the matrix D R  may be written as: 

D R  = T + T ' -  D [31] 

where T' is a matrix composed of T v. The form of T' is generally dependent on the direction 
of flow. In a special case, when the flow is in the direction of increasing i for all grid points 
and for both phases, T' will be a lower block-triangular matrix with non-zero entries in 
only the main diagonal and the subdiagonal. If the diagonal block-element of matrix T' for 
the row i is denoted by TC~ and the subdiagonal element by T X  i, then for the general case 
with solubility terms: 

T ~' T ~' _ _  

T X i  
T"' - R T  i -  -- + R T '  T"'  ' 1/2 

where: 

R T'i + 1/2 = -~(R . . . .  - Rs,)VOw, t3T~'+ 1/2 [32] 
+,,2 gPc 
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and : 

i 0 0 
TCi = TXi÷t + 2_RT ,  

RT'i+t, 2 

The derivatives t?Tt/SPc and the VO terms in [30] and [32] may be evaluated at different 
time levels m and k and the matrix T' will then be denoted T2 in analogy with the definition 

of R [15]. 
For the classical Newton's method with tangents, both k and m are at the level of the 

previous iteration, i.e. T' T,t,'~ and 8Tt/SP,. are tangents at Pt~. If it is now assumed that = J ( v  I 
only one Newton's iteration, [28], will be performed per time step, p m =  p ,+ l  and one 

obtains, with respect to [31], the equation: 

(T" + T',, ~ -- D)(P "+1 -- P") = --R~ + Q [33~ 

which is the matrix formulation of the linearized method, [26]. Therefore, we have the result: 

Linearized method [26] is the first iteration q['Newton's method, [28]. 
Numerical results for the method of [33] are on figure 7. The method is about twice as 

stable as the explicit method [22]. It should be noted again, that the one-dimensional 
problem we study here is not the most severe from the point of view of stability. Instability 
of explicit equations occurs, when the time step approaches a value at which the saturation 
front advances one grid point per time step. In multi-dimensional (especially single-well) 
problems, instability of explicit equations occurs for much smaller time steps and the 
improvement by using the linearized method of [33] is much larger than indicated by the 

results shown on figure 7. 

(d) Semi-implicit method Of Nolen & Berry (1972) 

These authors retain the nonlinearity in [26]. If we assume that the derivatives in T' 

I © t 

/ L mear i zed  method ,equat ion [ 3 3  ] 

/ 
C.8  

O 6- -  

Sw 
x 

0 .4- -  

O. 2 It~x 

I L J I 
0 0.2  0 . 4  0 6  0.8 !.¢! 

x / L  

Figure 7. Stability of the linearized method for Test Problem No. 1 at t = 1500 days. 



T R E A T M E N T  OF N O N L I N E A R  TERMS IN THE N U M E R I C A L  S O L U T I O N  OF P A R T I A L  DIFFERENTIAL E Q U A T I O N S  831  

are still evaluated at the level n, the matrix formulat ion of  the method  is : 

(T" + T. "+1 - D)(P "+I - P") = -R." + Q [34] 

which represents a system of nonlinear equations. The nonlinearity T "+  *(P"+' - P") was 

solved by Newton ' s  iteration. This is equivalent to iteration on the left-hand side of [263 

as follows 

. ~(v+ 1)c3Tl(p(v+ 1) 
( P z , + ,  - ~'t,, ~ p ~  ~ - Pc") 

. x(v)OTltp(v+ ,) 
= (Pz ,+ ,  - e l j  O p ~  ~ - P ~ ) )  

. %(v+ I)  . %(v)qSTZ~p(v) 
+ [(P,,+, -- e,,, - (P,,+, - e,,, J 8p~ ~ -- P~) 

d T  1 
+ (Pl,+~ - " ~ ) - - ¢ u (  ) P" et,, dpc~'c - c), v = 1,2 . . . .  [35] 

We observe immediately the following properties of the above me thod :  
(1) I f  pry) = p(,) and only one iteration [35] is performed, the method of Nolen & Berry 

becomes the linearized method [33]. 

(2) I f  the functions k,t(Sw) are linear, the method of Nolen & Berry gives the solution of the 
implicit equations [16]. 

No te  that s tatement  (2) above is not  true for the case of  the linearized method  [33]. 
Numerical  results for this method are presented in figure 8. For  Test Problem 1, the 

iterative method [35] started to diverge for a time step of 100 days, a l though only three 

iterations were necessary for convergence for smaller time steps. The convergence was 

I. O / 

| Semi- implicit method,equation[54] 
/ 

S W \ 
0.4- /%x=L/40 IX, ~ 

o,,,.,oo0o,, L!L 

I I I I 
0 0.2 04 0.6 0.8 1.0 

×/L 

Figure 8. Stability of the semi-implicit tangent method for Test Problem No. 1 at t = 1500 days. 
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S (v+ ~) .~)1 with the measured by the loo norm of saturation change, i.e. by 6Sw = maxi w, - -w,, 
closure 6S  w = 0.001. The relatively bad performance of [35] is only seemingly in contra- 
diction with the original work of Nolen & Berry (1972), where the authors concluded that 
this method is superior to the linearized method. The reason is that, in the original work, 
the semi-implicit method was used with chords instead of tangents in the matrix T'. We will 
discuss the performance of secant methods in (g). 

(e) L i n e a r i z e d  second-order  me thod  

Instead of the approximation [25], the implicit transmissibility may be approximated 
by a second-order expression 

~ T  l 1 c?2T t 
T ' " + l  ~ T ' "  + ~-~_ (P~"+ '  - Pc") + ( p , + ~  _ ~)2. [ 36 ]  

The expression [36] is itself nonlinear. In order to use it in a linearized method, we will first 
linearize it by assuming: 

( p e n + l  __ p,)2 = (p,~+ ~ _ p,~)(p,~ _ p,~-~) [37] 

in the second-order term. After linearization of TP similar to [26], the method may be 
written in matrix form as: 

iT, , ,  _ D)(p,,+~ _ p,) = -R," + Q [38] (Tn-F T ~ - F  2 -  n 

where T" is a matrix of second derivatives, similar in structure to matrix T'. Numerical 
results for the method [38] are shown in figure 9. Although the method seems to have less 

truncation error than the first-order linearization for smaller time steps, it behaves erratically 
for large time steps, when the approximation [37] is not adequate. 

,.o I Second order  l i n e a r l z e d ,  
m e t h o d ,  equation [ 3 8 ]  

0 . 6 - -  

a ~ t  = 1 8 7 5  days  ""-c_.-~ ~]X~x 

I , I i i 
0 0.2 O. 4 0 6 O. 8 i O 

× / L  

Figu re  9. S tab i l i ty  of the  s e c o n d - o r d e r  l inear ized  m e t h o d  for  Test  P r o b l e m  No.  1 a t  t = 1500 days .  
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(f) Solution of implicit equations by Newton's method 

All methods discussed so far have incorporated only some approximation to the implicit 

scheme [16]. Equations [16] may also be solved by Newton's method, derived already in 
(c), Using the notation already introduced, the tangent method may be written as 

[T (v) + T'I,~I - D] [P(V+ 1~ _ p(v)] = _R~I + Q 

v = 0, l, 2 . . . .  ; p(o) = p ,  [39] 

Theoretical treatment of Newton's method becomes quite complicated for systems of 
equations (see, for example, Ortega & Rheinboldt 1970) and the conditions for convergence, 
existence, and uniqueness of solution are not easily established for practical problems. The 
essential conditions are that the functions R7 + 1 have continuous second derivatives and the 
Jacobi matrix DR has an inverse, and they are usually met for practical problems. 

Rate of convergence is crucial for the feasibility of the method [39] as well as for the 
semi-implicit method [34], because one iteration needs approximately the same amount  of 
work as does the solution of one time step for any linearized method. This relation is based 
on the assumption that each iteration by Newton's method is solved to the same degree of 
accuracy as the solution of linearized equations. While this is always true when a direct 
method is used for the solution of the linearized matrix, the work ratio may be more 
favourable for Newton's method when an iterative method is used, since the equations for 
every Newton's iteration may be solved only approximately in the latter case, 

Numerical results for the method [39] are on figure 10. The closure for convergence was 
5S w = 0.001 and the average number of iterations to meet it was 3 for At = 25 and 50 days, 
4 for At = 100 days, and 5 for At = 187.5 days. With closure relaxed to 5Sw = 0.01, almost 
all cases could be solved in just two iterations, which shows that the convergence is very 

r o  

Sw 

0 8  

0 . 6  

0 . 4  

0 2  

Implicit transmissibilities 

+ I \ \ \ %   ':,OOdo,s I 
- -  o /~¢  = 1 8 7 . 5  days 

,I I I I 
0 0.2 0 .4  0 6  0.8 

x / L  

Figure 10. Stability of the implicit method for Test Problem No. 1 at t = 1500 days. 

I.O 
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rapid. The results also demonstrate clearly the superiority of the fully implicit transmissi- 
bilities to all previously considered methods. The same conclusions have been reached for 
multi-dimensional, two- and three-phase problems (Settari 1973). 

(g) Secant methods 

The methods discussed in previous paragraphs may be called tangent methods, since the 
derivatives OTt/OPc were evaluated as tangents at the level n (or, generally, at the previous 
iteration level). A better rate of convergence may be expected if the derivative is approxi- 
mated by a secant (chord) between 1 ~ and a reasonable estimate of P" + ~, denoted pk 

OT t Tt(S~) z ,, - T (S,~) dS,~, 
- -  ~ . [ 4 0 ]  

?JP,. S ~ . -  S"~ dP, 

The matrix T' may then be denoted as T'.+ ~/2 and secant methods are obtained through the 
replacement of T', by T',+ 1/2- If the chord is chosen reasonably, the secant method has a 
better rate of convergence than the corresponding tangent method (Ortega & Rheinboldt 
1970). Since the prediction of ASw = S~, - S~ is difficult for every grid point, a constant 
chord, AS w, is usually used, which is calculated from the maximum anticipated change of 
saturation, i.e. ASw ~- 6Sw. 

Such chord methods were compared during this investigation with tangent methods for 
the linearized method [33], the semi-implicit method [34], and Newton's method [39]. 
The improvement for the linearized method was marginal. For the other two methods, the 
only effect is in the rate of convergence, which changed very little for the Newton's method. 
However, the rate of convergence for the semi-implicit method improved dramatically and 

Sw 

,o I 
Semi-implicit method 

08 J secont, Z~S~=0 5 

0 G  

o 4 - o At = 100 days ~kc~ 

o.2-- a At='875 dGys I ' ~  

I 
l 

I 1 _ [  _ f 1 
0 0.2 0.4 ~!.6 08 (Z, 

×/L 
Figu re  11. S tabi l i ty  of the  semi- impl ic i t  secan t  m e t h o d  for  Test  P r o b l e m  No .  I at  ~ = 1500 days .  
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convergence in 4 iterations was obtained for At = 100 and 187.5 days. These results are 
shown in figure 11 and have considerably less truncation error than the fully implicit solution 
on figure 10. 

(h) Comparison of methods 

We have shown the effect of various treatments of the time level in the handling of trans- 
missibilities. As we progress from fully explicit to fully implicit treatment, the numerical 
stability of the equations increases. However, this improvement is gained at the expense of 
larger truncation errors. This can be seen by comparison of figure 6 with figures 7-10 for 
At = 25 days. The behaviour is also confirmed by the truncation error analysis included 
in the Appendix. Since Cw > 0, the first-order error term for the implicit method is always 
larger than the corresponding term for the explicit method, as pointed out first in 
MacDonald & Coats (1970). Comparison of the implicit and linearized method shows that 
the At and Ax components of the first-order term have the same sign for the implicit method 
(equation [A12]), while they have opposite signs for the linearized method (equation [A10]). 
This is also confirmed by numerical results. The errors for implicit solution on figure 10 
are of one sign and increase with At. The errors for linearized method (figure 7) change sign 
with At, which opens an interesting possibility of minimizing the discretization errors by an 
appropriate choice of At. 

The semi-implicit method does not lend itself easily to similar analysis, but the results 
suggest that the behaviour is not monotonic and the secant method has a relatively small 
truncation error. 

All three methods are efficient for solving the stability problem. The linearized method is 
embedded in both the semi-implicit and the implicit method. The advantage of Newton's 
method is in its relative insensitivity to the choice of chords; the advantage of the semi- 
implicit method is in lower truncation errors. 

5. HANDLING OF THE NONLINEARITY DUE TO Pc FUNCTION 

When the function Sw = .f(Pc) is not linear, the elements of matrix D become implicit: 
D = D n+ i. We will consider, for clarity, again the incompressible flow given by equations 
[5] ; in this case the ith block of matrix D simplifies to 

D ~ +  , = ¢ , x [ ( S w )  i 1 -  _ 

The nonlinearity due to S~ enters also in the matrix T', its effect on this term is, however, 
small and will not be considered separately. In order for S~ to satisfy equation [9], some 
iterative method must be used to obtain the solution. In the case that an iterative method 
is used to solve for implicit transmissibilities, the iterations on D will generally be sub- 
iterations of such an iterative method• In order to simplify the discussion, we will consider 
methods for solving [ 16] with implicit matrix D" + 1 in connection with the linearized method 
only. 
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(a) S i m p l e  i t e r a t i o n  

Based on the last iteration P(~L the derivative of Sw is updated as 

S,(,.i Sw(P~, ')) - Sw(P~;) 
, ,  . . . . . . .  ~ i ~  - p;;- " !42j 

- - c  - -  - - c  

If the corresponding matrix D is denoted as D " ) ,  the iterative scheme for the linearized 
method [33] may be written as 

(T" + T~," - D("))(P ( ' + ' '  - P") = - R .  ~ + Q " + ' ,  

v = 0, 1, 2 . . . .  ; pl,') = p(,~ [143] 

The method [43] was found to converge for small time steps, but  its stability limit was 

about  1/4 of the stability of the linearized method  and, in fact, even lower than the stability 

limit of the equat ions with explicit transmissibilities. Also, the derivative S~. must  be con- 

t inuous in order  that the method converges at all. Numerical ly  it means that  the method  

requires at least second-order  interpolat ion if the function Pc is given in the form of a table. 

In order to take full advantage of the stability of the t reatment  of matrix 7", we must  search 

for a better method.  

(b) N e w t o n ' s  i t e r a t i o n  

We can define a vector DS by 

D S " ' "  + 1 = D" + l ( p ,  + 1 _ p . ) .  [ 4 4 ]  

In terms of Sw, the element of DS will be 

D S ~ . , +  1 = S~,+ i _ S"~. 
(,~n + t n ,  

- , - w  - Sw)! .  

Let us substitute [44] into [33] and apply Newton ' s  method,  considering DS to be the only 

nonlinearity. F rom [44] it is easy to see that the derivative of DS is just D, therefore the 

method  can be written as 

(T ~ + T "  - D(~))(P " + u  - P ' ) )  = - R ~  - (T ~ + T~,")(P ~} - P") + DS ''~v~ + Q, 

v = 0, 1 . . . .  ; p(0) = p,.  [45] 

In terms of Sw, this is equivalent to iteration of the form : 

-w ~,(~)(p(,. + t) p~y)) [46] S(,I~ l) = X(,,~ + "w ,-c  - • 
p(v) where now .~'(") is a tangent at _ , . .  ~ w  

The method [45] when applied to the Pc curve of figure 3, failed to converge for any 
reasonable value of time step. The reason for this becomes clear if we realize that, except for 
S~,+ 1 all o ther  terms in [45] depend only weakly on Pc"+ 1 Therefore, the equat ion at a 

grid point  i can be approximate ly  replaced by the following problem : 

. + 1  , S"~. + C 0 F(Pc ,  ) = Sw(P'~ + ' )  - , = [47] 

where C is a certain constant.  For  the particular Pc function, the function F is depicted on 
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J c 

Figure 12. Divergence of Newton's method for Test Problem No. 2. 

figure 12. Because the function F has small derivatives at the ends of the interval in which 
solution is sought, Newton's method may converge or diverge depending on the initial 

guess (cf. Ostrowski 1973). 

(c) Modified Newton's method 

We will start with the observation that, in the case that the matrix T + T' was actually 
independent of Pc, we could obtain an exact solution after the first iteration [45] simply by 
solving [47] for S~ + ' at every point. This is possible because we have assumed at the 

beginning that the inverse function Sw(Pc) is known explicitly together with Pc(Sw). Then 
we can calculate Pc"+ ~(S"w + t). This idea of "inverse iteration" can be applied also in the 
general case as follows : 

(1) Let p(c) be the result of the solution of [45] on the (v + 1)th iteration. Calculate first 
the saturation vector S (v+ ') by 

s(v+ i)= s") + S~)(p~ c) - p(~% 
w i  - - w i  i 

i = 1 , . . . , N .  [48]  

(2) Re-calculate the pressure vector as p(v+ t) = .f(S(~+ ,)). For  example, we may define 

p(~+ ~)= p(;' 

p(v+l) = p(~+l) _ p (.~(~+t)) i = 1, N E49] 
w i  n i  c ' . - - w i  i, • • * ,  

The vectors P(~+ ') and S (~+ t) are then used for the next iteration. 
Since capillary pressure is usually small compared to pressure variations, we would 

expect this method to have a good convergence.. This was confirmed by numerical experi- 
ments. Sample results for Ax = L/IO and At = 50 days are shown in table 1. The first 
column gives the results with the original Pc curve. In the second column, the Pc curve was 
amplified 10 times. The convergence is extremely rapid even in the second case, when Pc 
is of the same order as VO. Also, the method was found to be insensitive to the manner in 
which the derivatives in D (~) are treated. Because 6S (~) is always extremely small, the second 

iteration is really used only to terminate the process and may be omitted. Therefore, there 
is no need to iterate in order to obtain a solution with D "+' if the method [48]-[49] is used. 
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Table 1. Convergence of the modified Newton's method [48] and [49]) 
for Test Problem no. 2 

Original P,: curve Amplified P,. curve 
Time 
step 15S ~1~ (5S 12~ 6S t~ ~3S i2b 

I 0.2133 0.00000 0.21330 0.00000 
9 0.1316 0.00018 0.11090 0.00326 
3 0.0795 0.00389 0.07028 0.00172 
4 0.0755 0.00176 0.06621 0.00223 
5 0.0568 0.00052 0.04210 0.00t 47 
6 0.0564 0.00070 0.05010 0.00105 

This method has apparently not been given in the literature previously. It may be noted 
in this connection that some authors use a different formulation of the basic flow equations 
(with S~. as one of the variables) in which the Pc nonlinearity is much less severe in the matrix 
D. 

6. G A S  P E R C O L A T I O N  

In a two-phase oil-gas flow problem with solution gas, free gas will be released from 
solution if the pressure decreases below the bubble point. Because of the very small viscosity 
of the gas, its mobility is high and gas flows upwards with relatively high velocities. Serious 
stability problems arise in a standard numerical solution of [1] in the case of a vertical 
or inclined coordinate, as soon as the gas phase becomes mobile (i.e. kr, > 0). This in- 
stability is essentially due to the explicit treatment of transmissibilities. The two factors 
that contribute to instability in this particular case are the large difference in densities of oil 
and gas and the stronger nonlinearity of pressure-dependent functions for gas. 

The first method for controlling this nonlinearity (Coats 1968) was developed before the 
importance of implicit treatment of coefficients was recognized. Later a similar, but simpler, 
method was proposed (McCreary 1971). Several investigators (MacDonald & Coats 1970: 
Letkeman & Ridings 1970; Nolen & Berry 1972) claimed that the use of the linearized or 
semi-implicit method, discussed here, also solves the stability problem associated with gas 
percolation. None of these works showed, however, how these methods compare with the 
earlier methods (Coats 1968; McCreary 1971). 

We will give such a comparison here for the problem studied in McCreary (1971), We 
have solved the problem by the linearized method and compared the results with the results 
for the methods of Coats and McCreary, reported in McCreary (1971). Saturations calcu- 
lated by all three methods for a selected time t = 900 days are shown on figure 13. The solid 
line represents the reference solution computed by McCreary using very small time steps 
and explicit transmissibilities. Obviously, the linearized method gives a much more accurate 
solution than the other two methods. This is especially true in the oil zone, where the 
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Figure  13. C o m p a r i s o n  of three methods  for the gas  perco la t ion  p rob lem of McCrea ry  (Test 
P rob lem No. 3). 

saturation of gas is only slightly higher than the critical saturation at which gas starts to 
flow. The common feature of the methods of Coats (1968) and McCreary (1971) is that they 
restrict the mobility of gas regardless of the relationship kr, = f(Sw), which permits develop- 
ment of large gas saturations in the oil zone. This is especially true of the method of 
McCreary. 

The stability of the linearized method was, for this problem, about equal to the method of 
Coats, while McCreary's method permitted use of about two times larger time steps. 
However, in view of the poor accuracy of McCreary's method, its gain in stability is not 
significant. 

As far as the comparison of various approximations to implicit transmissibilities is 
concerned, the general conclusions of Section 4(h) may be expected to hold also for gas 
percolation problems. Some results of comparisons, reported by Settari (1973) showed that 
the semi-implicit method is superior to Newton's method for a case of a reservoir with 
variable permeability (data described in Nolen & Berry 1972). 

C O N C L U S I O N S  

We have studied and compared numerous methods for the handling of strong non- 
linearities in the equations of two-phase flow in porous media. 

It has been shown that: 
(1) There are several methods that solve the problem of instability due to the treatment 

oftransmissibilities, namely the linearized, semi-implicit, and Newton's, methods. Generally, 
the stability is gained at the expense of discretization error or sensitivity to the treatment of 
chords. 

J.M.F., Vol. 1, No. 6--H 
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(2) The "inverse iteration" method of Section 5(c) solves the problem of handling the 
nonlinearity due to capillary pressure effectively without need for iteration. 

(3) The methods investigated in Sections 4 and 5 can also be used to solve the stability 
problem due to gas percolation, and are generally superior to special earlier methods. 

The conclusions made here, which are based on investigation of one-dimensional 
problems, were also confirmed for two-dimensional, two- and three-phase problems 
(Settari & Aziz 1973: Aziz et al. 1973; Settari 1973). 
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N O M E N C L A T U R E  

differential operator 
formation volume factor of non-wetting phase, B, - V,(p)/V, src where V.(p) is the volume of the non- 
wetting phase at pressure p and V, src is the volume of the same mass of non-wetting phase at standard 
(stock-tank) conditions. 
formation volume factor of wetting phase. Wetting phase has two components ,  wetting and dissolved 
non-wetting. B~, = (Vw(p) + Vd,(p)) / VwSTC, where Vw(p) + Va,(p) is the total volume occupied by a certain 
mass  of wetting componen t  with the max imum amoun t  of dissolved non-wetting component  at pressure 
p, and Vwsrc is the volume of the same mass of wetting component  at s tandard conditions. This 
definition implies that Vd,sr c = O, i.e. solubility is zero at STC.  
accumulat ion matrix. 
accumulat ion vector. 
Jacobi matrix of R. 
discretization error. 
function, equation E47]. 
fractional flow coefficient of wetting phase. 
vector of gravity terms. 
absolute permeability. 
relative permeability of phase/ .  
difference operator. 
capillary pressure. 
pressure of phase I. 
pressure vector. 
source term for phase I. 
source vector. 
residual vector. 
coefficients evaluated at rn and pressures at k level of time or iteration. 
solution ratio of non-wetting phase in wetting phase, R~ = (V~,sTC/Vwsr c, where V,~sr c is a volume of a 
certain mass of wetting component  at S TC, and Vd,sr c is the S T C  volume of the amoun t  of non-wetting 
component  that can, at thermodynamic  equilibrium, be dissolved in that  mass  of wetting component  

at a pressure p. 
saturation of wetting phase. 
transmissibility coefficient. 
transmissibility matrix. 
"derivatives" of transmissibility matrix. 
derivatives evaluated at m and pressures at k level of time or iteration. 
elements of matrix 7". 
time. 
Darcy 's  velocity. 
space coordinate. 
vertical coordinate, positive downwards.  
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Greek symbols 

6S 
A 

q~ 

2t 

/z 

P 

Superscripts and subscripts 
i grid point index. 
1 denotes phase l, 
n non-wetting phase. 
n 
STC 
w 

specific gravity, 7 = gP. 
norm of saturation change. 
increment. 
porosity. 
potential, (I) = p - 7z. 
transmissibility or mobility of phase l, 2 = kk,/(l~B)l for compressible flow, 2 = kkrd#t for incompressible 
flow. 
dynamic viscosity. 
density. 

/ = w,n. 

time level (superscript only), 
standard (or stock-tank) conditions. 
wetting phase. 
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A P P E N D I X  

Truncation errors./'or different approximations to transmissibilities 

The truncation error analysis for various difference approximations to [t] or [5] is 

difficult because of the coupling of these equations. However, in the incompressible case 
[5] can be formulated as a single equation in saturation (see, e.g. Fayers & Sheldon 1959 : 
Hiatt  1968) for derivation). If we consider, for simplicity, a horizontal coordinate x, and 

fluids of equal density, this equation may be written as: 

., 0Sw (?S,. 

where 
- ~?/) 

u r  = Uw + u ,  = - ( ' ~ w  + '~,,)~.~ 

is the total superficial (Darcy) velocity and )"" = d/~,/dS,,,, where 

I i , ,  = ; : . 

For a one-dimensional problem, u-r = const. = q where q is the flow rate per unit area 
imposed as a boundary condition. The formulation [A 1] is more suitable for error analysis 

than [5]. Since there is no direct correspondence between the difference equations for the 

two formulations, the analogy is based on the assumption that the treatment of k,; in 

[5] is equivalent to the treatment of Sw on the left 'hand side of [All. The operator  to be 

approximated will be denoted as 

8Sw 8S, 
Cw--~-: = 0. [A2] A S , , -  ~x (t 

A difference operator approximating A at the point x, will be denoted by L(S,,.) and the 

truncation error of L is defined as e = AS,,(x;) - L(Sw,). 

W E I G H T I N G  O F  T R A N S M I S S 1 B 1 L I T I E S  ( E X P L I C I T  A P P R O X I M A T I O N S )  

A.I Explicit approximations 

Both midpoint weighting formulae [18] and [19] are represented by the same approxi- 

mation 
~s  - s v' (s~,, + '  - sT,,) l, iS "+11 . . . . . .  ~w, ~. [A3] 

- - m  . . . . .  = . . . . . . .  2 A X  . . . . . .  C w i  A t  

The truncation error at the n + 1 time level is found to be" 

At  2 AX 2 ,,, 
At [2S' + CwS] + [3S' + C. ,S]  + ~ S + O(a  3) 

era -  2 6~ 

where S' = 8Sw/Ox and S = 8Sw/&. 
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This can be further simplified if it is assumed that Cw is locally constant. Then - CwS = 
S", and -CwS"" = S ' ,  and the final expression is 

At , At2s,.. A X  2 ,,, 
em - ~ S + 6 + --~-S + O(A3). [A4] 

For the upstream weighting, assume flow from i -  1 to i +  1, then the single-point 
formula [20] is represented by: 

L [S  n+ 1) __ (Swi  - S w i - , ) n  Cw.(Snw +1 -- S"w,) _ 0 [ A 5 ]  

u ,  w ,  A x  ' At 

and the truncation error may be simplified as above to give 

e u = - + Cw,-- ~- + ~ - S " + ~  " + ~ - S  + O(A3). [A63 

For the two-point upstream weighting [21] the operator is 

, S w ,  " - " - S w , )  (3S. . . -  ,) - (3S~,,_, Sw,_2) __ C w ( S n + i  1 n 
L / q ' n+  1) 

2u~"w, 2Ax ' At 

(3Sw 4Sw, i + Sw, 2) (S"+1 " , - _ , w ,  - S w , )  

= 2Ax - Cw, At - 0. [A7] 

The discretization error of [A7] is found to be 

At , At 2 , A X  2 ,,, 

e2, - ~ S ' +  -~-S'" ~--S + O(A3). [A8] 

All three error expressions have a first-order time truncation term. While [A4] and [A8] 
have only second-order terms in Ax, [A6] has a first-order term as well as the mixed term 
AxAt. 

A.2 Implicit approximations 

Only single-point upstream weighting will be considered, with flow from i - 1 to i + 1. 
The analog of the linearized method of Section 4a may be obtained as follows: Extra- 

polation of k,t according to [25] is equivalent to extrapolation of S w as : 

?Swl °At 
s ;  +' ~ s"~ + t ot I 

and the derivative is obtained from 
OSw, n 

- - ( S w , - S  . . . .  ) " / A x =  Cw, ( - ~ - ) .  

After substitution of extrapolated values of S,~ in the first part of [A5] the operator will be 

,+1 1 [  AxcwAt At . t L,x(Sw, ) = S"w, ,(S~' - S . . . .  )" - S",_,  + axC~---(sw,_,_ - S ~ , _ 2 ) "  

(,~n+ 1 n 
- C w  " - ~ '  - S w , )  _ O .  

' A t  



844 A, SEFTARI and K. AZIZ 

If it is assumed that C ..... = Cw, this can be written as 

At 
L .~S "+ 1~ "~ ~ --  ' . . . .  ...... ., . =  LdSw, )+ C,,TAx 2[Sw,--- 2S~,, , + Sw, ~] = 0 .  [A9~ 

Then the error  term is 

At " .:2 ] 
e e , = e , + - - -  [ A x S " - A x A t S " - A 6 - - S " j  + O[A3) 

- Cw,Ax [ 

Since S" = - C , , , S " ,  S" = - C w S ' ,  a n d  S "  = - C , , , S " ,  the final expression is 

3 C AXIS '  4At2 2- ?'\A--t S"  -A-:~2-S'" + O(A3). [AI0] 
e , , , - -  w, 2 / 3 + 6 

The fully implicit approximat ion  with k,~ = k,~(S,",, + ~) has a s traightforward analog in: 

~1, = (Sw i  - S~.,i) ?14-1 (Sn,+i 1 - S ' , , )  0 [ A l l ]  

A\" - Cw, At 

with discretization error  

~. = + I S " +  + - - ~ S ' "  + O(A31. [AI2] 

Note  that the first-order At terms have opposite signs in ~A10] and [A12]. 

R6sum6--La mod61isation math6matique de l'ecoulement simultane de deux ou trois fluides non 
miscibles dans un milieu poreux met en jeu un syst~me d'6quations aux d6riv6es partielles non 
lin~aires coupl6es. Ces 6quations se reduisent '~ un systdme d'6quations alg6briques non lin6aires 
par l'utilisation d'approximations aux diff6rences finies pour les d6riv6es. 

Ce module comporte plusieurs types de non-lin6arit6s qui demandent une analyse soignee. 
On pr6sente ici une 6tude syst6matique de toutes tes m6thodes disponsibles, et de quelques nouvelles; 
pour le traitement de ces non-lin6arit6s. 

Les techniques de solution pr6sentbes peuvent egalement s'av6rer utiles dans le cas d'autres 
syst~mes d'6quations aux d6riv6es partielles fortement non lin6aires. 

Auszag--Die gleichzeitige Stroemung von zwei oder drei nicht mischbarer. Fluessigkeiten in 
einem prooesen Medium wird dutch ein System gekoppelter nichtlinearer partieller Differential- 
gleichungen modelliert. Diese Gleichungen werden auf ein System nichtlinearer algebraischer 
Gleichungen zurueckgefuehrt, wobei die Ableitungen mit Hilfe endlicher Differenzen angenaehert 
werden. In diesem Modell gibt es verschiedene Typen von Nichlinearitaeten, die eine sorgfaeltige 
Analyse erfordern. Alle bekannten und einige neuen Methoden fuer die Behandlung der Nicht- 
linearitaeten dieses Modells werden systematisch untersucht. Es wird vermutet, dass die hier 
angegebenen Loesungstechniken auch fuer andere stark nichtlineare Systeme partieller Differential- 
gleichungen brachbar sind. 

Pe3~oMe- -Mo~le~ i lpoaono  COBMeCTHOe Teqent, le ~[Byx I.IIIFI Tpex HecMeKIIIBatoII1HXC~t )KFI~KOCTeH B 
rtopHcTOfi cpeAe uoCpeACTBOM CliCTeMbl napHbIX HeAHHe~IHblX qaCTHblX ~tl td~eperlKaa.rn,nblx 
y p a s a e H n ~ .  ~TH ypaaHeHna  yrtpoLUeHbI 2IO CtlCTeMbl He.rlHHe~HblX a ~ r e f p a a q e c K n x  y p a a n e r r ~  
nocpe,~CTBOM MeTo,~a KOUeqHblX pa3HocTefi.  B ~aHHO~I Mo.aeYln cyttteCTByeT HeCKOYI'bKO He.qH- 
He~HblX TttlIOB, ypaBHeHil~, Tpe6yrot t tnx  Ti/iaTeyl1,iloro aaaar~3a.  3aec~, npe~acTaa~eno CIlCTeMaT- 
ri,~ecKoe gcc~eAoBail i le  Bcex HaJqilqilblX H HeCKOYI~KHX HOBbIX MeTOAOB K p a 3 p e t u e u i l m  
HeJIIIHe~HOCTII 3TO~ MoAeYIII. F lpe~InoaaraeTca ,  qTo MOmeT 6blT'b Ta~ore AoKa3aHa rlpHMeHilMOCT'b 
npHBe~IeHao~ 8 pa6oTe TeXHIIKt'I petuengs r ~ p y r n M  pe3Ko OTSIIlqatoIIIIlMCYl OT Ytt{He~HblX 
y p a a n e i l n a M  8 qaCTUhlX npon380,aHbIX. 


